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Abstract
Radiobiological models are essential components of modern radiotherapy.
They are increasingly applied to optimize and evaluate the quality of different
treatment planning modalities. They are frequently used in designing new
radiotherapy clinical trials by estimating the expected therapeutic ratio of
new protocols. In radiobiology, the therapeutic ratio is estimated from the
expected gain in tumour control probability (TCP) to the risk of normal
tissue complication probability (NTCP). However, estimates of TCP/NTCP are
currently based on the deterministic and simplistic linear-quadratic formalism
with limited prediction power when applied prospectively. Given the complex
and stochastic nature of the physical, chemical and biological interactions
associated with spatial and temporal radiation induced effects in living tissues,
it is conjectured that methods based on Monte Carlo (MC) analysis may
provide better estimates of TCP/NTCP for radiotherapy treatment planning
and trial design. Indeed, over the past few decades, methods based on MC
have demonstrated superior performance for accurate simulation of radiation
transport, tumour growth and particle track structures; however, successful
application of modelling radiobiological response and outcomes in radiotherapy
is still hampered with several challenges. In this review, we provide an
overview of some of the main techniques used in radiobiological modelling
for radiotherapy, with focus on the MC role as a promising computational
vehicle. We highlight the current challenges, issues and future potentials
of the MC approach towards a comprehensive systems-based framework in
radiobiological modelling for radiotherapy.

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent years have witnessed burgeoning interest in using radiobiological models to rank
radiation therapy patient treatment plans in order to identify the ‘optimal’ plan or at least

0031-9155/12/110075+23$33.00 © 2012 Institute of Physics and Engineering in Medicine Printed in the UK & the USA R75

http://dx.doi.org/10.1088/0031-9155/57/11/R75
mailto:issam.elnaqa@mcgill.ca
http://stacks.iop.org/PMB/57/R75


R76 Topical Review

Figure 1. Sigmoidally shaped response curves (for TCP and NTCP) are constructed as a function
of a linear weighting of various factors, for a given dose distribution, which may include multiple
dose–volume metrics as well as clinical factors. The units of the x-axis may be thought of as
‘equivalent dose’ units. Reproduced with permission from El Naqa et al 2006a Int. J. Radiat.
Oncol. Biol. Phys. 64 1275–86. Copyright 2006 Elsevier Inc.

personalize the patient’s plan (Brahme 1999, Deasy et al 2002, Li 2011). This interest has
been driven by technological advances in 3D treatment planning and intensity modulated
radiotherapy (IMRT) that have allowed the delivery of very complex shaped dose distributions
almost unimaginable a decade ago. Nevertheless, these technological advances did not translate
into similar significant improvements in cancer patient survival rates (Begg et al 2011, Fraass
and Moran 2012). By part, this has been hampered by a lack of current radiobiological
model’s ability to predict accurately, at the time of treatment planning, the individual outcomes
associated with such complex dose distributions and delivery time sequences. It is believed
that accurate prediction of treatment outcomes would provide clinicians with better tools for
informed decision-making about designing more effective treatment plans that are tailored to
maximize benefit and reduce side effects for individual patients (Halperin et al 2008).

Radiotherapy outcomes are usually characterized by two metrics: the tumour control
probability (TCP) and the normal tissues complication probability (NTCP) of surrounding
normal tissues (Steel 2002, Webb 2001). TCP/NTCP models could be used during the
consultation period as a guide for ranking treatment options (Armstrong et al 2005, Weinstein
et al 2001). Alternatively, these models could be included in an objective function, and
the optimization problem driving the actual patient’s treatment plan can be formulated in
terms relevant to maximizing tumour eradication benefit and minimizing complication risk
(Moiseenko et al 2004, Brahme 1999) as shown in figure 1.

Several radiobiological models for radiotherapy have been proposed in the literature.
The linear-quadratic model (LQ) is the most frequently used model for including the effects
of repair between treatment fractions. The LQ model is based on clonogenic cell survival
curves and is parameterized by the radiosensitivity ratio (α/β). It is thought that it quantifies
the effects of both unrepairable damage and repairable damage susceptible to misrepair after
tumour sterilization by radiation (Hall and Giaccia 2006). Several variations of this model
have been proposed including a Poisson-based (Goitein 1987) and a birth–death model (Zaider

http://dx.doi.org/10.1016/j.ijrobp.2005.11.022
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and Minerbo 2000). Phenomenological models such as the equivalent uniform dose (EUD)
proposed by Niemierko are also applied (Niemierko 1999). The EUD model is characterized
by a single exponent parameter ‘a’ that controls volume effect. These models and their
variations use information only about the dose distribution and fractionation. However, it is
well known that radiotherapy outcomes may also be affected by multiple clinical and biological
prognostic factors such as stage, volume, tumour hypoxia, etc (Choi et al 2001, Fu et al 1999).
Therefore, approaches that utilize data-driven models, in which dose–volume metrics are
combined with other patient or disease based prognostic factors have been proposed (Blanco
et al 2005, Bradley et al 2004b, Marks 2002, Hope et al 2005, Tucker et al 2004). In a
standard modelling exercise, model parameters could be chosen using traditional statistical
techniques to define the abscissa of a logistic regression function, for instance (Blanco et al
2005, Bradley et al 2004a, Levegrun et al 2001, Marks 2002, El Naqa et al 2006b, Hope
et al 2006). These methods though useful, are incapable of handling potentially complex
physical and biological interactions, manifested as important nonlinear relationships between
combinations of variables and resulting outcomes, thus limiting their predictive power and
applicability in clinical practice. Other methods based on nonlinear artificial intelligence and
machine-learning techniques have been applied to confer cross-variable interactions. Artificial
intelligence techniques (e.g. neural networks and decision trees), which are able to emulate
human intelligence by learning the surrounding environment from the given input data, have
also been utilized for their ability to detect nonlinear patterns in the data. In particular, neural
networks were extensively investigated to model post-radiation treatment outcomes for cases
of lung injury (Su et al 2005, Munley et al 1999) and biochemical failure and rectal bleeding
in prostate cancer (Gulliford et al 2004). However, in a recent work, we have demonstrated
that kernel-based machine learning methods can provide superior performance for modelling
NTCP (El Naqa et al 2009) and TCP (El Naqa et al 2010). Nevertheless, such methods in their
current state do not provide mechanistic understanding of radiation interaction with living
tissue relying on population averaged selected information, rather than first physical, chemical
and biological principles.

Monte Carlo (MC) techniques have witnessed increased use in radiation therapy with
applications in treatment source modelling, imaging process simulations, and patient dose
calculations for treatment planning or simply to get a more optimal estimate of the delivered
dose. This increased impact has come about as the result of extensive research on algorithms
and calculation acceleration techniques including electron transport modelling, multiple
scattering theories and boundary crossing algorithms (Seuntjens and Rogers 2009). Currently,
MC techniques are considered the de facto gold standard when it comes to dose calculation in
radiotherapy.

However, despite decades of MC work in radiobiology and noted success in event-by-event
particle tracking, estimation of microdosimetric quantities, and biological endpoints (e.g. DNA
double-strand breaks (DSBs), mutations, chromosomal aberrations, tumour growth, etc), it did
not evolve into more widespread application in developing predictive NTCP/TCP models to
guide clinical radiotherapy practice. This is in contrast to the impact that macroscopic MC
radiation transport simulation has had on a variety of applications in radiation therapy.

In this review, we focus on the application of MC simulations in radiobiological modelling
for radiotherapy outcomes prediction, from first principles. Towards this goal, we present
a brief background on radiotherapy outcomes and MC simulations. This is followed by
current MC applications and its expanding role in outcomes modelling of radiotherapy
response. We highlight the current challenges, including increased computing demand, and
the potential future opportunities of MC approaches for modelling of radiobiological response
and radiotherapy treatment outcomes.
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2. Background

2.1. Monte Carlo methods in radiotherapy dosimetry

Monte Carlo methods represent a wide class of numerical computer simulation techniques
that utilizes statistical resampling to solve complex systems that are not easily tractable
analytically. It was originally developed by a group of radiation physicists during the Manhattan
nuclear project (Eckhardt 1987). Since its inception, MC methods were successfully applied
in many diverse disciplines ranging from quantum physics, electrical and telecommunication
engineering, computational biology, weather forecasting, to even computer board games
(Bouzy and Helmstetter 2003). The current applications of MC dosimetry methods to radiation
therapy could be broadly divided into two areas of macrodosimetry and micro (nano)-
dosimetry.

2.1.1. Macrodosimetry. This area of MC dosimetry application is mainly related to scoring
radiation dose in larger volumes (millimetres). In a recent review marking the 50th anniversary
of MC applications in medical physics, Rogers (2006 presented an elegant historical overview
of the journey of developing MC codes for radiation macrodosimetry techniques for electron–
photon transport simulations starting by the seminal work of Martin Berger at the National
Bureau of Standards on condensed history techniques and the development of the ETRAN
code, then through the Erice Summer School on MC in 1987 and discussed the broad range of
codes available such as EGS4, PENELOPE, MCNP, GEANT4 with special emphasis on the
EGS4/EGSnrc code system (Rogers 2006). The widespread use of these codes and adaptation
by commercial vendors in the clinical arena have motivated the AAPM task group report
TG-105 on ‘Issues associated with clinical implementation of Monte Carlo-based photon and
electron external beam treatment planning.’ The report provides pedagogical review on the use
of MC simulations in radiotherapy planning and discusses the salient issues associated with
clinical implementation and experimental verification of MC dose algorithms. It also provides
a framework for commissioning and routine quality assurance of MC-based treatment planning
systems (MCTP) (Chetty et al 2007). An overview of the latest developments in MCTP is
found in Spezi and Lewis (2008.

2.1.2. Microdosimetry or nanodosimetry. This area of MC simulation is mainly related
to scoring dose in very small areas at the cellular, sub-cellular or molecular level known
collectively as MC radiation track-structure codes. These track-structure codes have been
developed to estimate the molecular spectrum of clustered damage in DNA and subsequent
processes of damage repair. They provide knowledge about the detailed clustering of individual
energy depositions by atomic ionizations and excitations along the track of ionizing particles
and subsequent free radical diffusion and interaction with DNA atoms (Nikjoo et al 1998,
2006). Unlike their macrodosimetry counterparts, these microdosimetry MC codes can also
deal with electrons and light ions at low energies and very short distances. At such low
energies and small dimensions, event-by-event tracking is applied without resorting to
condensed history techniques leading to longer simulation times. An inherent assumption
in these codes is that the structure of the tracks of charged particle is intimately involved
in determining the observed biological effect in a proportional manner to its linear energy
transfer (LET). Examples of such codes include PARTRAC (Paretzke et al 1991), KURBUC
(Uehara et al 1993a), MCDS (Semenenko and Stewart 2004), etc. Microdosimetric quantities
such as lineal energy distributions or cluster analyses extracted from the scored low-energy
ionizations and excitations shed light on the proximity of events and relate to the direct
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effects of ionizing radiation on matter. These types of codes have witnessed application
in different areas including: space radiation, shielding, radiation protection, radiotherapy,
biophysical modelling, radiation biology, radioactive beam, high-energy physics, solid state
physics, nuclear physics, accelerator-driven systems, neutron optics and spallation of neutron
sources (Nikjoo et al 1998, 2006). Nevertheless, their application in radiobiological modelling
of radiotherapy outcomes did not extend to the level that would be clinically useful for
predicting radiotherapy response or for designing clinical oncology trials, for instance. This is
an important intermediary area between macro- and microdosimetry that involves applications
of MC in tumour growth modelling and response to radiotherapy as discussed below.

2.2. Radiobiological modelling in radiotherapy

As mentioned earlier, radiotherapy outcomes are usually characterized by TCP and the
surrounding NTCP metrics (Steel 2002, Webb 2001). The methods currently used for building
predictive TCP/NTCP treatment outcome models could be divided into analytical and multi-
metric based approaches. However, before divulging into the details of outcomes modelling,
it would be pedagogically necessary to provide a brief review of the basic relevant radiation
effects and radiobiological principles.

2.2.1. Radiobiology of radiotherapy response. Classical radiobiology has been defined by
‘The Four Rs’ (cellular damage repair, cell-cycle redistribution, reoxygenation and cellular
repopulation/division over a course of radiotherapy) (Hall and Giaccia 2006). It is believed
that radiation-induced cellular lethality is primarily caused by DNA damage in targeted cells.
Two types of cell death have been linked to radiation: apoptosis and post-mitotic cell death.
However, tumour cell radiosensitivity is controlled via many factors (known and unknown)
related to tumour DNA repair efficiency (e.g. homologous recombination or nonhomologous
endjoining), cell cycle control, oxygen concentration and the radiation dose rate (Hall and
Giaccia 2006, Lehnert 2008, Joiner and van der Kogel 2009).

The seminal work of Fertil and Malaise has shown that the survival of cell lines given small
doses of radiation in-vitro correlates well with perceived ability to cure corresponding human
tumours (Fertil and Malaise 1985). The preferred technique for deriving radiosensitivity data
from biopsies was to allow plated cells to grow in vitro which were then irradiated, typically to
doses similar to the single fraction doses given in conventional radiotherapy (2 Gy), and then
measuring the rate of survival (SF2). Other relevant markers of radiobiology response include
the potential doubling time of the cells (Tpot) and the gamma factor (γ ), which represents the
slope of the survival curve at 50% rate (Choi et al 2001). These concepts comprise the basis for
analytical (mechanistic) outcomes modelling techniques in radiotherapy as discussed below.

2.2.2. Analytical methods. These are methods generally based on simplified biophysical
understanding of irradiation effects mainly from in vitro assays. The LQ model is the most
frequently used model for including the effects of irradiation damage and repair between dose
fractions. The LQ model is based on cell survival fraction (SF) analysis and is parameterized
by the radiosensitivity ratio (α/β):

SF = exp(−(α + β ∗ d) ∗ D + ln 2 ∗ t/Tpot)), (1)

where d is the fraction size, D is the total delivered dose, t is the difference between the
total treatment time (T) and the lag period before accelerated clonogen repopulation begins
(TK), and Tpot is the potential doubling time of the cells. The ratio ln 2/Tpot is referred to as
the repopulation parameter. It is thought that the LQ models can quantify the effects of both
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unrepairable damage and repairable damage susceptible to misrepair after tumour sterilization
by radiation as mentioned earlier (Hall and Giaccia 2006). Several variations of this model
have been proposed including a Poisson-based (Goitein 1987), extension to inhomogeneities
in dose and clonogenic cell density (Webb and Nahum 1993), and a birth–death model (Zaider
and Minerbo 2000). Among the most commonly used LQ-based TCP models (Hall 1994) is

TCP = exp(−N exp(−((α + β ∗ d) ∗ D + ln 2 ∗ t/Tpot)), (2)

where N is the number of cells. On the other hand, the most commonly used NTCP model is
the Lyman–Kutcher–Burman (LKB) model (Lyman 1985, Kutcher and Burman 1989), which
could be written as

NTCP(D, D50, m) = 1√
2π

∫ t

−∞
exp(−u2/2) du, (3)

where

t = D − D50

mD50
,

D50 is the position of the 50% probability dose point and m is a parameter to control the
slope of the dose response. Note that D50 could be expressed as a function of the partial organ
volume (V):

D50(V ) = D50(1)/V n, (4)

where D50(1) is D50 for the whole volume and n is a volume dependence parameter. Another
commonly used NTCP model is the critical volume (CV) model (Niemierko and Goitein 1993,
Stavrev et al 2001), which is based on the idea that organs are composed of functional subunits
(FSUs), which are arranged in serial or parallel architectures:

NTCP(μ̄d, μcr, σ ) = 1√
2π

∫ t

−∞
exp(−u2/2) du, (5)

where

t = − ln(− ln μ̄d ) − ln(− ln μcr)

σ
,

μ̄d is the mean relative damaged volume, μcr is the critical fraction of FSUs, and σ accounts
for the inter-patient variability.

An alternative approach to the above formalism is based on the concept of EUD or
generalized EUD (gEUD), which is given by

gEUD =
(∑

i

viD
a
i

)1/a

, (6)

where vi is the fractional organ volume receiving a dose Di and a is a tissue-specific parameter
that describes the volume effect. To account for the effects of cold spots on TCP, the tumour is
represented by a negative a (<-10). In the case of NTCP, the parameter choice depends on the
functional subunit organization; for serial-organ complications, a large a (>10) is selected;
for parallel-organs complications, a ∼ 1 (mean dose equivalent).

2.2.3. Multi-metric models. These are phenomenological models and depend on parameters
available from the collected clinical and dosimetric data (i.e. data driven). In these data-driven
models (Deasy and El Naqa 2008), dose–volume metrics are combined with other patient or
disease based prognostic factors (stage, histology, site, volume, tumour hypoxia, etc (Choi et al
2001, Fu et al 1999). These methods could be applied to TCP or NTCP modelling; however,
they have been more widely applied to normal tissue toxicity (Blanco et al 2005, Bradley
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et al 2004b, Marks 2002, Hope et al 2005, Tucker et al 2004, Bradley et al 2007, Huang et al
2012, 2011). The results of this type of  approach  are not  expressed in  closed form as above
but instead, the model parameters are chosen in a stepwise fashion to define the abscissa of a
regression model (cf figure 1).

Many of these presented analytical/multi-metric methods require dedicated software tools
for implementation. As examples of such software tools in the literature are BIOPLAN and
DREES. BIOPLAN uses several analytical models for evaluation of radiotherapy treatment
plans (Sanchez-Nieto and Nahum 2000), while DREES is an open-source software package
developed by our group for dose response modelling using analytical and multi-metric methods
(El Naqa et al 2006c).

More recently, artificial intelligence and machine learning methods have been proposed
for radiotherapy outcome modelling (El Naqa 2012). For instance, neural networks were used
to model post-radiation treatment outcomes for cases of lung injury (Su et al 2005) and prostate
cancer (Gulliford et al 2004). We have demonstrated that machine learning techniques based
on kernel mapping methods could be used to model TCP and NTCP with superior performance
to the state-of-the art (El Naqa et al 2009, 2010). These methods can inherently account for
complex nonlinear radiobiological interactions and provide excellent fit to out-of-sample data.
However, one of the main challenges of this framework is the selection of the most relevant
variables to include within the model and the ability to interpret the data mechanistically, where
numerical techniques like Monte Carlo might be able to help. For instance, MC methods have
been recently applied for modelling tumour growth (Tuckwell et al 2008) and cell response to
irradiation (McMahon et al 2012) as discussed below. Interestingly, MC-based methods are
also indirectly used for training many of such machine learning algorithms. For instance, a
TCP model of tumour local control in lung cancer was developed by combining dosimetric
physical variables and biological factors extracted from patients’ blood sera (Oh et al 2011). In
order to account for the hierarchical relationship between the different physical and biological
variables in the TCP model, a graphical Bayesian network approach was utilized (Oh et al
2011). The structure and the parameters of the developed Bayesian network for TCP modelling
were estimated using a modified Markov Chain Monte Carlo (MCMC) algorithm.

3. Monte Carlo techniques for radiobiological modelling in radiotherapy

3.1. MC in radiation therapy plan evaluation, radiobiological indices, uncertainties and
parameters

For application of radiobiological models discussed in section 2.2 in radiotherapy, MC
techniques have played a central role in determining uncertainties in extracted information
from treatment planning systems such as radiobiological parameters, dose–volume metrics,
set-up and margin uncertainties, or the effect of uncertainties in the dose distributions on
radiobiological indices (e.g. Webb and Nahum 1993, Zagars et al 1987). This area of
application of Monte Carlo simulation to radiation biological modelling is quite broad with a
wide variety of applications. Therefore, in this review we limit ourselves to providing a few
representative examples and refer interested reader to cited literature for further details.

In the case of analytical radiobiological models, Warkentin et al (2005 evaluated a
‘population’ TCP model in terms of its ability to provide reliable biologic model parameter
estimates (Warkentin et al 2005). MC techniques based on preset values for the various
radiobiological models were used to generate pseudo datasets to which fits of the population
TCP model were made. It was shown based on this study that there exists a significant
correlation between the level of population heterogeneity and the estimated α/β parameter.
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Their results implied that fits to clinical data might not be able to distinguish between
tumours exhibiting a high degree of heterogeneity and a strong beta-mechanism and those
containing little heterogeneity and having a weak beta-mechanism. Booth and Zavgorodni
(2001 investigated the relative importance of three uncertainties, i.e. spatially uniform
dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity
heterogeneity, on the delivered dose and TCP distribution following a typical course of
fractionated external beam radiotherapy (Booth and Zavgorodni 2001). MC techniques were
used for the simulation of a population of patients, and distributions of dose across the patient
population were used to calculate dose and TCP related parameters with each of the three
individual types of uncertainties. The calculations show that the dose errors in the tumour
volume are dominated by the spatially uniform component of dose uncertainty, an observation
that could be related to machine-specific parameters, such as linear accelerator calibration.

On the other hand, a frequent problem using the multi-metric radiobiological approaches
is that the data extracted from dose distributions are in a context where no account for tissue
heterogeneity was made during the planning of the radiation therapy. This may impact the
accuracy of the derived dose–volume or dose–biological parameter metrics, and hence the
parameters that are extracted from the models. Therefore, in retrospective contexts, to account
for heterogeneity correction, the dose distributions are recalculated retrospectively using MC
algorithms. For instance, Lindsay et al used the VMC++ MC code for dose recalculation.
To specify proper beam weights and wedges, the beams were broken into beamlets and
mathematical optimization was used to match the archived water-based dose distributions.
The derived beam weights and wedge effects were then applied to MC beamlets regenerated
based on the patient computed tomography (CT) densities. The method was compared with
other heterogeneity correction methods (Lindsay et al 2007). The study found that the average
absolute percent difference between heterogeneity-corrected MC and water-based treatment
plans increased to 3.1 ± 0.9%. Comparison of maximum lung doses showed that the average
MC heterogeneity-corrected values were 5.3 ± 2.8 Gy less than the treatment plan with
heterogeneity-corrected values using analytical methods. This approach was also recently
applied for modelling TCP in lung cancer (El Naqa et al 2010). In another study, Stroian
et al have shown that MC dose distributions can correlate much better with the probability
of radiation-induced fibrosis than would the CadPlan dose distributions, which were pencil
beam-based with no heterogeneity corrections (Stroian et al 2008). A rather different site than
lung, Stathakis et al used MC dose recalculation to evaluate the risk of secondary malignancies
undergoing IMRT for prostate cancer patients (Stathakis et al 2007).

Another interesting MC application is the effect of set-up errors and margins in treatment
planning. Ploquin (2006 compared the effect of set-up error and uncertainty on radiation
therapy treatment plans for head and neck cancer using IMRT and 3D-CRT (Ploquin 2006).
MC generated set-up errors and uncertainty were performed in three orthogonal directions for
840 simulated courses of treatment for each plan. A probability approach was used to compare
the sensitivities of the IMRT and the 3D-CRT plans to set-up error and uncertainty in terms of
EUD to the targets and to the organs-at-risk (OARs). Based on the EUD analysis, the targets
and OARs showed considerably greater sensitivity to set-up errors with the IMRT plan than
with the 3D-CRT plan. Specifically, For the IMRT plan, target EUDs were reduced by 4%,
7.5% and 10% for 2 mm, 4 mm and 6 mm set-up errors, respectively.

3.2. MC modelling of radiotherapy response

The ability of MC methods to accommodate a hierarchy of models reaching from global
description of birth–death processes to very specific features of intracellular dynamics have
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led to their early application in tumour growth modelling (Drasdo et al 1995, Drasdo 1998).
Specifically, they have been applied as part of discrete cell-based models such as cellular
automata to reproduce the Gompertz law of cancer growth. This is in contrast to continuum
models, which consider classical interactions between cell density and chemical species that
provide nutrients or influence cell cycle events of tumour progression using reaction-diffusion-
convection equations as learnt from spheroids, for instance (Casciari et al 1992). Interested
reader in mathematical models of tumour growth is refereed to Roose et al (2007, Wodarz and
Komarova (2008.

Application of MC in radiotherapy TCP and NTCP modelling covers a wide area. MC was
used to study how inter-patient differences can affect the TCP (Guirado and Ruiz de Almodovar
2003). In this study, a radiosensitivity value x was drawn from a lognormal distribution and
values for parameters D50 and γ are randomly sampled from a normal distribution. Borkenstein
et al developed an MC-based tumour growth and response model to radiation in which each
tumour cell is assigned a set of radiobiological parameters, and the status of each cell is
checked in discrete intervals. Tumour proliferation is governed by individual cell cycle times,
growth fraction, cell apoptotic capacity and cell angiogenesis. The response to radiation is
determined by the radiosensitivity parameters and oxygenation status (Borkenstein et al 2004).
Stamatakos et al investigated the effect of clonogenic cell density on radiotherapy response
of glioblastoma multiforme (GBM). Their MC predictions were comparable to clinical trial
experience (Stamatakos et al 2006). Partridge presented a cellular MC model to describe
radiation damage and repair in normal epithelial tissues. The results were consistent with
both the rate of induction of irreparable DNA lesions and the clinically observed acute oral
and pharyngeal mucosal reactions to radiotherapy (Partridge 2008). Most recently, McMahon
et al presented an MC model of cellular radiation response to spatially modulated fields that
incorporated damage from both direct radiation and intercellular communication including
bystander signalling (McMahon et al 2012). The simulations seemed to reproduce cell survival
following modulated radiation exposures and interestingly suggesting that the bystander effect
is responsible for a significant portion of cell killing in uniformly irradiated cells in contrast
with traditional radiobiological models.

The different Rs (Hall and Giaccia 2006) of radiotherapy received considerable MC
modelling attention. Incorporation of tumour hypoxia in growth models of head and neck
squamous cell carcinoma has been developed using MC methods (Tuckwell et al 2008).
Hypoxia is implemented by random assignment of partial oxygen pressure values to individual
tumour cells based on in vivo Eppendorf probe experimental data. Repopulation acceleration
due to loss of asymmetry of stem cell division seemed to reshape the survival curve with a
‘growth’ shoulder (Marcu et al 2004). The effects of both hypoxia and accelerated repopulation
have been incorporated for head and neck cancers (Harriss-Phillips et al 2011).

3.3. Particle track structure codes for radiation-induced damage

Monte Carlo methods have been extensively used to estimate the molecular spectrum of
damage in clustered and not-clustered DNA lesions (Gbp−1 Gy−1) (Goodhead 1994, Ward
1994, Cucinotta et al 2000, Nikjoo et al 2001, Watanabe and Nikjoo 2002, Semenenko et al
2003, Allison et al 2006, etc). The temporal and spatial evolution of the resulting effects of
the deposition of energy from ionizing radiation can be divided into three phases: physical,
chemical and biological following tentatively the time scale of figure 2.

The different available particle track structure MC codes aim to emulate these phases
to varying extents. However, a main limitation of the majority of radiation transport and
early track structure codes is the sole focus on the physical events (ionization, excitations
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Figure 2. The different phases involved in radiation-induced effect in living tissue. Reproduced
with permission from Joiner and van der Kogel 2009, copyright 2009 Hodder Education.

Table 1. Different models for the elastic, excitation and ionization cross-sections for electrons of
several Monte Carlo particle track structure codes.

Code Elastic scattering Excitation Ionization Energy range

KURBUC (Uehara Screened Rutherford Empirical formula Seltzer’s 10 eV–
et al 1993b) derived from the formula 10 MeV

Fano plot (Berger (Seltzer
and Wang 1988) 1988)

PARTRAC (Friedland ELAST database of Complex di-electric 10 eV –
et al 2011a, Alloni NIST (Berger formalism 10 MeV
et al 2012, Dingfelder et al 1993) (Dingfelder et al
et al 1999) 1999)
NOREC (Semenenko ELAST database of Complex di- 7.4 eV–
et al 2003, NIST (Berger et al electric formalism 1 MeV
Ritchie et al 1991) 1993) and OREC (Ritchieet al 1991)

elastic angular
distributions

GEANT4-DNA Screened Rutherford Semi-empirical 2 eV–1 MeV
(Agostinelli et al (Champion et al 2009, based on complex di-
2003, Incerti Emfietzoglou electric formalism
et al 2010) et al 2000) and binary encounter

(Emfietzoglou
et al 2003)

and scattering) and limited tracking of subsequent chemical and biological-induced effects.
However, some prominent codes have gone beyond this point into including chemical and pre-
chemical tracks. The chemical phase involves the generation of free radicals through water
radiolysis that will subsequently interact with the medium. Nevertheless, and unfortunately,
most codes to date stop short of tracking the events of the most complex phase and actually the
most relevant to radiobiological response, which is the biological phase. A summary review
of many current MC particle track structure codes is given by Nikjoo et al (2006) using the
KURBUC code as an example. For demonstration purposes of the current state-of-the-art in
the field of particle track structure and illustration of these phases, we opt in our review to select
few representative cases as discussed below, with special focus on GEANT4-DNA because of
its broad spectrum and open-access availability to the community. Moreover, a summary of
the different models used for elastic, excitation and ionization cross-sections of electrons in
these codes is provided in table 1 for easy comparison by the reader.
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While different particle track structure codes have different implementations, its worth
mentioning that they require understandingly more processing time than particle transport
MC codes. The fact that all particle interactions are explicitly simulated, without relying on
condensed history or multiple scattering approximations, also limits the dimensions of the
volume in which simulations can be run to the micrometre scale with current computational
processing architectures. As an example, the complete simulation of a single 1 MeV electron
slowing down to 10 eV in a 30 cm3 water phantom using GEANT4-DNA processes and
following all secondary electrons takes approximately 175 s if using GEANT4-DNA processes,
while it takes 0.25 s if one is using GEANT4 low energy Livermore processes (simulations were
carried using GEANT4.9.5 on a Linux Virtual Machine running on a 2.2 GHz Intel Core i7).
Although an explicit time-comparison is difficult to achieve as it depends on the geometry, the
simulation goal, and desired uncertainty, code implementation, the activated physical process,
and the tracking energy limits, it is safe to say that particle track structure codes can carry a
significant simulation time burden and that hardware and software advances are still needed
for real-time realization. Moreover, when particle track structure codes are used to simulate
radiation interaction with DNA, typically a post-processing of the simulated track data is
performed to obtain relevant DNA damage values. Many approaches of analysis are available
in the literature, such as K-means clustering (Michalik 1993, Verhaegen and Reniers 2004),
density-based spatial clustering of applications with noise (DBSCAN) clustering (Francis
et al 2011), or dedicated efficient algorithms to capture the major trends in the DNA damage
spectrum (e.g. multiply damaged sites) predicted using detailed track structure simulation
(Semenenko and Stewart 2004, Stewart et al 2011).

3.3.1. KURBUC. This code was developed for water vapour medium with energies between
10 eV and 10 MeV (Uehara et al 1993a). The code can handle light ions such as protons
(1 keV–1 MeV) and alpha particles (1 keV–8 MeV). The code also provides information
on the formation of ionized (H2O+), excited (H2O∗) water molecules and hydration of sub-
excitation electrons (electrons with energy not sufficient for excitation of water molecules). In
addition, it provides the resulting radical species from water radiolysis in the chemical stage
using CHEMKURBUC up to a period of 1 μs after the physical phase. This is where Brownian
diffusion in aqueous solution and reactions among the reactive chemical species take place
until track reaction kinetics comes to rest within 1 μs period. This could be attributed to
the attenuated local concentrations of the radiolytic products. Most recently, biological phase
tracking is being developed, where a kinetic model of single-strand annealing for DNA repair
of DSBs has been added (Taleei et al 2011).

3.3.2. NOREC. This code is a modification of the original OREC (Oak Ridge electron
transport code) with an updated electron elastic scattering cross-sections (Semenenko et al
2003). The code can calculate a detailed event-by-event transport of a primary electron and all
of its secondaries in liquid water over a range of energies from 7.4 eV to 1 MeV. The chemical
track remained similar to the original OREC implementation as in KURBUC (Turner et al
1983). The biological phase simulation is unavailable yet.

3.3.3. PARTRAC. The code was originally developed for track structure of electrons
(Paretzke et al 1991, Dingfelder et al 1999). Currently, the code can handle photon and
ion tracks, heterogeneous targets and modelling of radiation-induced damage to DNA. Energy
ranges are available for photons (soft x-rays to energetic gamma rays), electrons (10 eV–
10 MeV), protons and helium nuclei (1 keV–1 GeV) and heavier ions (1 MeV/u–1 GeV/u).
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An updated version of the code also includes cross-sections for electrons, and light ions in
liquid water (Dingfelder et al 2008). The physical track is simulated to a time scale of 1 fs.
The subsequent chemical track includes the formation of diverse chemical species similar
to KURBUC and NOREC, but this process has been updated and improved to extend the
interaction datasets for heavier ions (Kreipl et al 2009). Most recently, a DNA double-strand
break (DSB) repair module via the non-homologous end-joining (NHEJ) has been added
(Friedland et al 2010, 2011b) making it among the most developed code in this regard
to date.

3.3.4. GEANT4-DNA. GEANT4-DNA is an open-source simulation toolkit that aims to
extend macroscopic GEANT4 to model the effects of radiation on biological systems at
cellular and DNA levels (Agostinelli et al 2003, Allison et al 2006). In the following we
discuss, GEANT4-DNA in more details because of its open source nature availability for
future development.

The GEANT4-DNA code is actively being extended with the objective of including
physical, chemical and biological models in order to simulate cellular and subcellular damage
induced by ionizing radiation. It has successfully incorporated a new set of electromagnetic
processess and is currently able to track particles in liquid water, low energy electrons (2 eV–
1 MeV), protons (10 eV–100 MeV), alpha particles (1 keV–400 MeV), as well as light atoms
(H, He, C, O, N, Fe) and ions as shown in figure 3.

The GEANT4-DNA processes can simulate explicitely every interaction. As an
example, figure 4 shows two 1 keV electrons that are incident on a slab of liquid
water. The left electron track was simulated using standard low energy processess (G4e-
MultipleScattering, G4e-Ionization) while the right track was followed with GEANT4-DNA
processes (G4DNA-Elastic, G4DNA-Excitation, G4DNA-Ionization, G4DNA-Attachment,
G4DNA-VibExcitation).

A summary of the importance of the different interactions is plotted in figure 5. From
figures 4 and 5, it is obvious that condensed history techniques are inapropriate for resolving
resulting events at very low energies and dimensions. The models used in GEANT4-DNA are
based on semi-empirical models and on the plane-wave Born approximation (Villagrasa et al
2011) and were verified and compared with experimental data (Incerti et al 2010).

GEANT4 allows the creation of detailed DNA and cellular geometries through its Detector
Construction class, as was recently demonstrated (Bernal et al 2011). They modelled a B-DNA
arrangement of 30 nm chromatin fibres totalling 5.4 × 108 base pairs irradiated by protons and
alpha particles of different energies as shown in figure 6. Notably, they found that the number of
DNA SSB seemed independent of the incident particles linear energy transfer (LET), whereas
DSB were relatively more frequent as the LET increased. In these simulations, SSBs were
counted when an event with transferred energy higher than 8.3 eV occurred inside one of the
10.8 × 108 target volumes representing the phosphodiester covalent bond groups. A DSB
was counted if two SSBs were found to be closer than ten base pairs (bp) apart while lying on
opposite strands of the B-DNA model.

Currently, GEANT4-DNA offers the possibility of modelling direct damage to small
biological sub-units by physically tracking particles. Recently, in version 4.9.5, a prototype
for simulating the chemical phase was added and experimental validations and verifications
are underway.

3.3.5. Microdosimetric quantities and relationship to DSBs. One of the main current
objectives of particle track structure codes in medical physics is the calculation of
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Figure 3. Comparisons of six 3D track structures obtained with GEANT4-DNA physics processes
for single 10 keV incident particles in liquid water. The particles are emitted towards the positive
z-direction and from different x-positions for the sake of clarity: proton (x = −50 nm), hydrogen
(x = −100 nm), electron (x = 0), He2+ (x = 50 nm), He+(x = 100 nm), helium (x = 150 nm)
(Incerti et al 2010).

microdosimetric quantities with the goal to relate these quantities to measurable physical,
biological or clinical endpoints. Microdosimetric, in contrast to macrodosimetric, quantities
allow for a better quantification of radiation effects in a small volume of biological interest,
such as volumes of shape and sizes ranging from DNA (2 nm), the nucleosome (around 10 nm),
chromosome (1 μm), the cell nucleus (few μm) to a cell (10 μm). The suitability of macro-
or micro-dosimetric quantities to characterize effects also depends on the fluence (i.e. on the
number of particles that traverse the volume of interest for a given energy dose deposition).
Away from gradients in a dose distribution, at high-absorbed dose, the dose in an extended
mass is essentially the same as a small mass such as a single cell. However, at the microscopic
level, energy deposition is stochastic and the absorbed dose, which by definition implies the
calculation of an expectation value of the imparted energy over a large number of events, is no
longer relevant. The microdosimetric fundamental quantity that describes energy absorbed on
an interaction by interaction basis is denoted as energy deposit (ICRU 1983), εi, defined as the
energy deposited in a single interaction, εi = Tin − Tout + Q�m, where Tin is the kinetic energy
of the incident ionizing particle, Tout the sum of the kinetic energies of all ionizing particles
leaving the interaction site, and Q�m is the change in the rest mass energy of the atom and all
the particles involved in this interaction.

Three important stochastic quantities could be derived from the quantity energy deposit:
(1) the energy imparted to matter in a volume, ε, which is the summation of all the energy
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Figure 4. Two 1 keV electrons incident on slab of liquid water using: (left) GEANT4 standard
electromagnetic processes, (right) GEANT4-DNA low energy processes. The standard processes
kill the electron after one interaction and deposit its energy locally. The GEANT4-DNA processes
explicitly simulate every interaction, elastic scattering, ionizations and excitations down to 5 eV in
this simulation, where the electron energy is deposited locally.

Figure 5. Total number of interactions. The electron on the left produced the only multiple scattering
interaction. The electron on the right produced all the other secondary tracks and interactions.

deposits in that volume; (2) the lineal energy, which is defined as the ratio of imparted energy
to the mean cord length of a volume around the interaction site, i.e. y = ε/l, expressed in
eV nm−1 or keV μm−1; (3) the specific energy z, expressed in Gy, which is the imparted
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(a)

(b)

(c)

Figure 6. Geometrical features in Bernal et al (2011) simulations: (a) irradiation setup including
900 chromatin fibres, (b) geometrical model of the 30 nm chromatin fibre, including an arrangement
of six pairs of nucleosomes (in red) wrapped around a histone (in green), and (c) one loop of the
DNA molecule surrounding a histone.

energy per unit mass m. With these stochastic quantities defined, corresponding probability
density functions can be associated such as the lineal energy distribution and from these,
derived quantities such as the frequency mean lineal energy and the dose mean lineal energy
can be obtained. This would allow measuring physical microdosimetric endpoints using tissue
equivalent proportional counters, for example, and comparing these measurements to MC
track structure simulations of these distributions and their corresponding average quantities
for validation purposes. However, most of the microdosimetric quantities defined in ICRU
(1983 do not provide information about the localization of individual interactions with respect
to the target, only about mean characteristics of energy depositions or distributions in relation
to virtual target volumes. Track structure MC codes, however, assuming they are accurate, do
provide the detailed information on the position, proximity and the type (soft or hard ionization
and excitation) of each interaction along the trajectory of the electrons slowing down or created
as a result of the collision of another particle. To overcome this issue, post-processing analyses
to the coordinate data can be performed to analyse the track structure. One example of such a
post-processing method is the clustering method (Michalik 1993). According to this method,
which is a form of K-means clustering, the types of interactions (e.g. ionizations) are grouped
in spherical clusters of a given radius p. If the cluster contains j ionizations, it is said to be a
cluster of order j. The clustering analysis is a simple method that helps to reconcile observed
data with a crude model of ionization density in water or scaled water vapour. As an example
of correlating cluster frequency with a biological endpoint, e.g., a DNA DSB, the energy
dependence of the number of clusters containing at least a given number of ionizations to
the energy dependence of lesion yields (measured DNA DSBs) could be compared. Figure 7
shows an example of a plot used to determine the cluster order (number of ionizations) that
makes the cluster frequency consistent with both the energy dependence of the lesions as well
as the absolute number of lesions. In this manner, Michalik (1993) determined that at least
three ionizations in a 1 nm target are required to make the cluster analysis consistent with
DSB data. For a 2 nm target, at least four ionizations are required, for a 3 nm target, at least
five ionizations, and at least six ionizations for a 4 nm target. For 5 nm targets no thresholds
consistent with the DSB data were found.

Verhaegen and Reniers (2004) applied the clustering analysis method to study the
radiation quality effects of mammography radiation versus conventional low-LET radiation.



R90 Topical Review

(a) (b)

Figure 7. Energy dependence of the mean absolute frequency of clusters containing at least a
threshold number of ionizations j in sites with the diameter 2 nm compared with experimental
data. (a) Electrons, (b) alpha-particles. Adapted from Michalik (1993). Reproduced with permission
from Michalik et al 1993 Rad. Res. 134 265–70, Copyright 1993 by Academic Press.

Interestingly, their findings were corroborated by Bernal et al using the geometrical model of
B-DNA presented in section 3.3.4, where they were able to predict similar radiation quality
effects for mammography using explicit counting of DSBs (Bernal et al 2011).

4. Issues and future directions

Monte Carlo calculations are stochastic in nature and inherently contain random errors, or
statistical uncertainty. These uncertainties can impact the radiobiological parameters extracted
from these dose distributions. Buffa and Nahum investigated the influence of statistical
uncertainties on dose–volume histograms (DVHs) and the Poisson-based TCP model (Buffa
and Nahum 2000). They noticed that with MC uncertainties the TCP calculation systematically
underestimates the actual TCP. This underestimation depends on the degree of heterogeneity of
the radiobiological parameters over the population and decreases with increasing the biological
heterogeneity. The level of uncertainty decreases inversely with the square root of the number of
particles or the computational time. The level of acceptable uncertainty for clinical application
has been investigated in the literature and summarized in AAPM-TG-105 (Chetty et al 2007).
Keall et al discussed the effect of statistical noise on clinical acceptability of a lung treatment
plan using evaluation methods such as visual examination of isodose lines on computed
tomography (CT) scans and DVHs as well as calculated biological indices (Keall et al 2000).
This approach for statistical uncertainty analysis was generalized into the evaluation of a ‘cost
function’ that could represent any treatment plan of the suitability of the plan for the intended
treatment (Kawrakow 2004). It has been determined that a statistical uncertainty of 2% or
less does not significantly affect isodose lines, DVHs, or biological indices (Keall et al 2000,
Kawrakow 2004).

In the case of track structure modelling, there are still several challenges related to the
different physical, chemical and biological phases. Recently, Toburen (2012) summarized
the physical challenges as follows: (1) uncertainties in simulating low-energy electrons (sub-
1 keV), which has been recently questioned in the context of the quantum uncertainty principle
(Thomson and Kawrakow 2011); (2) charge transfer and the devolvement of single electron
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loss by capture cross-sections; and (3) estimation of effective charge lost by electron capture
interactions. As for the simulation of the chemical phase, Toburen highlights the issue of high
ionization density estimates following interactions of charged particles with water, or other
descriptors of the biologic medium. For instance, the ionization density along a proton track at
energies near the Bragg peak (maximum in the stopping power) leads to about one ionization
per 10 Å, or about an ionization for every 2–3 molecules traversed along the path of the
proton; thus ionizations are separated sufficiently that one is generally independent of another.
Moreover, it is noticed that most of the microdosimetric quantities defined in ICRU (1983 do not
provide information about the localization of individual interactions with respect to the target
as described earlier. Therefore, a more realistic representation would involve the simulation
of interactions between radiation and the DNA molecules surrounded by water molecules
in crystalline form using clustering techniques, for instance. An advantage of the clustering
analysis is that it can be applied to different types of events, including ionization and also, for
example, the distribution of radicals. This could be applied to the radical distributions resulting
from more recent Monte Carlo codes that include elements of the chemical phase. Radiation
transport modelling in more realistic models of the cell and different targets within the cell is
required to better link measurable biological endpoints to track structure. In addition to these
issues, there are other challenges to the chemical stage, which includes radical diffusivity
(random walk), damage fixation, scavenging, etc. In the case of the biological phase, the
picture is even more complicated since accurate understanding of cell death processes, the
presence of asynchronous cells, complex signalling pathways, epigenetic variations, are still
virtually unknown. This is in addition to the computational burden associated with event-by-
event particle tracking compared to macroscopic dose calculations, which limits these types
of model calculations to microscopic volumes and making it orders of magnitude away from
allowing the representation of a radiotherapy application to a human tumour. Nevertheless,
the combination of modelling approaches with current evolution in biotechnology data may
actually prove to be very useful despite these outlined challenges. As Toburen puts it ‘Hopefully
physicists will continue to provide the data needed to address model weaknesses and modellers
will incorporate these new data as we seek to provide better tools for understanding the
mechanism(s) responsible for biologic response to ionizing radiation and to reduce the
uncertainties in estimating risks from new and different radiation source characteristics.’

MC techniques application for radiotherapy outcomes prediction is still in its infancy.
However, successful strides have been made in modelling DSBs, tumour growth and hypoxia
effect. Recently, a new kinetic model was developed to link DSB induction from MC
simulations to deterministic repair models. Specifically, formulae linking the LQ model
radiosensitivity parameters to DSB induction and repair explicitly were developed to account
for the contribution to cell killing of unrejoinable DSBs, misrepaired and fixed DSBs (Carlson
et al 2008).

A rather promising approach would be to follow a systems biology framework, which uses
engineering inspired techniques to develop comprehensive mathematical models of complex
biological systems. For instance, methods based on multi-scale analysis have been successfully
applied for comprehensive modelling of tumour growth. This approach allows conducting
simulations in space and time simultaneously over the different microscopic and macroscopic
scales, which has been increasingly recognized as a powerful tool to refine hypotheses, focus
experiments, and enable more accurate predictions of tumour behaviour (Deisboeck et al 2011,
Zhang et al 2009). Recently, Friedland and colleagues stated that for better understanding of
radiation action on biological systems like cellular macromolecules (e.g. DNA in its higher
structures), a synergistic approach of experiments and quantitative modelling of working
hypotheses would be necessary (Friedland et al 2008). Furthermore, patient’s imaging data
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(a)

(b)

Figure 8. A depiction of multiscale-modelling framework of tissue (tumour) radiation response
along the time and space axes. (a) Tumour growth model (reproduced with permission from
Deisboeck et al (2011) Annu. Rev. Biomed. Eng. 13 127–55. Copyright 2011 by Academic Press).
(b) Radiation response phases.

could be used as an indispensible resource to support application of such modelling schemes
in vivo (Stamatakos et al 2002, Titz and Jeraj 2008, Vaidya et al 2012).

In a more recent review, Wang (2010 suggested using MC methods in conjunction with the
LQ model in a time-dependent bottom-up fashion to mitigate uncertainty issues with current
radiobiological models in modern radiotherapy (Wang 2010). In our view, a comprehensive

http://dx.doi.org/10.1146/annurev-bioeng-071910-124729


Topical Review R93

multi-scale approach that can span spatial and temporal changes could be represented as
depicted in figure 8, which would encompass the multi-scale parts of the tumorigenesis
(atomic, molecular, tissue, organ) and the various multi-scaled radiation-induced response
stages (i.e. physical, chemical and biological) over the spatial and temporal axes.

5. Conclusions

Monte Carlo techniques have been successfully applied for calculating radiotherapy dose
distributions, treatment plan evaluation and uncertainty estimates, modelling tumour growth
and simulating particle track structures. However, their application for radiobiological
modelling of response and treatment outcomes in radiotherapy has been limited thus far.
In this review, we have presented an overview of the emerging role that MC can play as
a computational vehicle for radiobiological modelling in radiotherapy. We provided a brief
review of TCP/NTCP modelling using analytical and multi-metrics approaches. We presented
the current application of MC in radiobiological modelling in radiotherapy as a tool for
estimating analytical models’ uncertainties, dose recalculation in multi-metric techniques to
improve dosimetric accuracy, modelling tumour growth, and its role in particle structure
track simulation. We provided several demonstrative examples of these MC applications
and presented the main features of some representative track structure codes highlighting
their current abilities and limitations. Finally, we discussed the current challenges for MC
application in radiobiological modelling in radiotherapy and presented some potential future
directions based on multi-scale computing systems (ie systems radiobiology). To recapitulate,
we believe that a new dawn of in silico radiotherapy is breaking through and MC methods are
expected to be one of its main shining computational vehicles.
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